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ABSTRACT: In this work, we develop methodologies for
analyzing and cross comparing metabolic models. We
investigate three important metabolic networks to discuss
the complexity of biological organization of organisms,
modeling, and system properties. In particular, we analyze
these metabolic networks because of their biotechnological
and basic science importance: the photosynthetic carbon
metabolism in a general leaf, the Rhodobacter spheroides
bacterium, and the Chlamydomonas reinhardtii alga. We adopt
single- and multi-objective optimization algorithms to max-
imize the CO2 uptake rate and the production of metabolites
of industrial interest or for ecological purposes. We focus both on the level of genes (e.g., finding genetic manipulations to
increase the production of one or more metabolites) and on finding concentration enzymes for improving the CO2 consumption.
We find that R. spheroides is able to absorb an amount of CO2 until 57.452 mmol h−1 gDW−1, while C. reinhardtii obtains a
maximum of 6.7331. We report that the Pareto front analysis proves extremely useful to compare different organisms, as well as
providing the possibility to investigate them with the same framework. By using the sensitivity and robustness analysis, our
framework identifies the most sensitive and fragile components of the biological systems we take into account, allowing us to
compare their models. We adopt the identifiability analysis to detect functional relations among enzymes; we observe that
RuBisCO, GAPDH, and FBPase belong to the same functional group, as suggested also by the sensitivity analysis.

KEYWORDS: metabolic CAD, synthetic biology, multi-objective optimization, sensitivity analysis, robustness analysis,
photosynthetic yield

Developing models to simulate and predict the dynamic
responses of metabolic networks has always been a

challenging aim of systems biology. This goal is reached
through the analysis of the main pathways involved in the
metabolism of an organism. In particular, photosynthetic
organisms perform many important functions for the planet,
e.g., absorbing atmospheric CO2, harvesting solar energy, and
generating O2 instead of processing oxygen.
In this paper, we focus our studies on the investigation of

three metabolic networks: (i) the photosynthetic carbon
metabolism pathway1 of a generic leaf and (ii) Rhodobacter
spheroides2 and (iii) the light-driven algal metabolism of
Chlamydomonas reinhardtii.3 In Supporting Information, we
report also other experiments and analysis with respect to the
chloroplast starch degradation pathway4 and the aspartate-
derived amino acid pathway from plants.5

Carbon metabolism is a process that takes place in
chloroplasts, which are organelles present in the cells of plants
and eukaryotic algae and represent the site of the photosyn-
thesis. The energy from light is captured by chlorophyll
pigments and is converted into chemical energy (ATP and
NADH). Chloroplasts produce glucose from sunlight energy.
The glucose then transfers to the mitochondrion for aerobic
respiration. The function of chloroplasts is basically to make
food through the photosynthesis, i.e., by trapping light energy
to convert water and carbon dioxide to form oxygen and
glucose. During the photosynthesis, carbon is used for growth
and some excess carbon can be fixed and stored in compact
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polymers such as starch. The latter is stored in the form of
granules made up of both linear and branched polymers of
glucose.6

The R. sphaeroides system by Imam et al.2 models all of the
most interesting features of photosynthesis, as well as the
metabolic capabilities of this kind of organisms. Interestingly,
when the R. sphaeroides lacks oxygen intake, it can process light
energy through a photosynthetic electron transport chain,
whose features are similar to those found in plants.7 Moreover,
during its photosynthetic growth, R. sphaeroides uses either CO2
as the sole carbon source or other organic carbon sources in
order to grow autotrophically or heterotrophically. The
autotrophic metabolism of R. sphaeroides makes it a potential
organism for use in the synthesis of chemicals or polymers that
can serve as raw materials in the production of biofuels or as a
means of sequestering atmospheric or industrially produced
CO2. Therefore, a comprehensive analysis of the R. sphaeroides
model may prove very useful for the understanding of both the
lifestyle and the mechanisms underlying transitions between
these different metabolic states.
The model of the Chlamydomonas reinhardtii metabolism3

allows the investigation of photosynthesis in algae and in
particular of light regulation. The advantages of this model and
its optimization are evident from the perspective of biofuel
production. The organisms and pathways above-mentioned
cover an important task by using the photosynthetic process.
Increasing the ability of these organisms to consume CO2 can
be very interesting. For this reason, in this paper we investigate
the photosynthesis process and optimize it.
In Figure 1, we report the pipeline of the computational

analysis techniques. The computational method takes a
metabolic network as input, which can be modeled by using
ordinary differential equations (ODEs), differential algebraic

equations (DAEs), or partial differential equations (PDEs) or
by using the flux balance analysis framework (FBA) containing
or not the gene protein reaction (GPR) mappings. In this way,
the method is able to menage different mathematical models
and, as described in the following, to perform different analyses.
Additionally, the framework here presented can be used in
different areas, as in electronic design automation, making it
suitable for general purposes. The method performs single- and
multi-objective optimizations to reach desired targets. The aim
is to find the values of the decision variables in order to obtain
one (single-objective) or more (multi-objectives) phenotypes.
In this work, we consider different components of the biological
model. For instance, we can choose to (i) perturb enzyme
concentrations, (ii) turn off genes, or (iii) search for the
optimal nutrients (uptake rates). Enzyme concentrations,
genes, and nutrients represent the decision variables of the
optimization problems. For instance, through a multi-objective
approach, we seek the genetic manipulations (decision
variables) to maximize simultaneously the CO2 consumption
and the biomass formation (two objective functions) of R.
sphaeroides. In this case, we focus on the genetic level by
performing gene knockouts.
The results of the multi-objective optimization is not a single

solution (as in a single optimization problem), but a set of non-
dominated points, which constitute the Pareto front (the blue
points of the central plot of Figure 1). A point is called non-
dominated if there are no points that outperform it in all the
objective functions. Instead, the dominated points (represented
in red in the central plot of Figure 1) are feasible points but are
less good with respect to the blue points of the graph and
therefore not optimal. Pareto optimality is useful to obtain not
only a vast range of Pareto optimal solutions but also the best
trade-off design. In addition, the shape of the front and the

Figure 1. Flowchart of the framework here presented. The framework is applicable to each metabolic network (modeled with flux balance analysis
with/without the gene-protein-reaction mappings or by using ordinary differential equations, algebraic differential equations, or partial differential
equations). In the first step, the metabolic network (input) is analyzed according to the sensitivity, in order to rank the components of the network
(reactions, species, or pathways). This first step does not change the conformation of the network but only evaluates the importance of its
components in the model. In the optimization procedure (single- or multi-objective), the algorithm optimizes the decision variables of the model to
maximize or minimize one objective or more (in the flowchart, two objectives f1, f 2 are being optimized). Decision variables can be (i) the
concentration values of the enzymes, (ii) the knockout genes set, or (iii) the uptake rates. The method tunes the variables in an appropriate way
(described in the text) for optimizing the objectives (chosen by the users), such as the photosynthetic yield and the biomass of the organism. The
result of the multi-objective optimization is the Pareto front (blue points). Each point of the front represents a particular conformation of the
network. By investigating the variables space of the Pareto front, our method calculates the identifiability relationships, i.e., the functional relations
between the decision variables. The Pareto optimality is also coupled with the robustness analysis. For each Pareto point, we evaluate the global and
local robustness (in the flowchart, the size of the Pareto point represents the robustness). The output of the method is therefore a modified network.
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number of Pareto solutions give an idea of the behavior of the
metabolic network/organism with respect to a particular
phenotype optimization.
Furthermore, for each Pareto optimal solution, our method

calculates the robustness indexes. The robustness analysis is
performed to evaluate the fragility of the biological system
when it undergoes small perturbations, which could be endogen
(for instance, small perturbation of the enzymatic concen-
trations) or hexogen (for instance, small perturbation of the
external environment). The introduction of robustness in the
analysis should hence result in more reliable and realistic targets
for biotechnology.
Our computational analysis framework is extended also with

sensitivity and identifiability analyses. The former ranks the
components of the biological systems (metabolites, enzymes,
pathways, and genes) in terms of sensitivity and is an
independent step with respect to optimization and robustness.
The elements that have a large influence on the outputs of the
systems are considered sensitive. In this work, we couple
sensitivity with optimization, since we restrict the set of the
decision variables considering only the most sensitive
parameters of the model. In particular, in the carbon
metabolism network we want to maximize CO2 uptake rate
in several experiments. In a first step we optimize 25 enzyme
concentrations. Second, by using the sensitivity analysis, we
consider only the most sensitive parameters/enzymes. Indeed,
we choose to optimize (i) the first 11 more sensitive enzymes
and (ii) the first 6 more sensitive enzymes. The other enzymes
are maintained constant. Details are reported in the following
section and in Supporting Information.
The identifiability analysis finds functional relations among

enzymes, by analyzing the values of the decision variables after
and before the optimization. The output of the method is one
or more metabolic networks. In Figure 1, the output is chosen
from the Pareto front according to trade-off and robustness
values. In the graph, the vertices are the metabolites involved in
the network, and the edges are the relationships between
metabolites, in this case the biochemical reactions and the
transport reaction. An edge represents a reversible reaction,
while an oriented edge represents an irreversible reaction. The
dashed line represents a modified reaction, for instance, an
intervention in the regulatory factors of the reaction or in the
gene knockout array. The blue color of the vertex represents a
change in the uptake rate, i.e., a change of a nutrient for the
organism.
In Table 1, we show the advantages and limitations linked to

the methods and models used in our approach. In particular, by
using the FBA and GPR framework, it is not possible to predict
metabolite concentrations, since this method does not use
kinetic parameters. However, it can determine fluxes at steady

state. Additionally, FBA does not account for regulatory effects
such as activation of enzymes or regulation of gene expression.
Therefore, its predictions may not always be accurate.
However, since FBA does not require kinetic parameters, it
can be computed very quickly even for large networks. This
makes it well suited to studies that characterize many different
perturbations such as different substrates or genetic manipu-
lations.8

On the other hand, by using ODEs-DAEs-PDEs, the time to
solve the system increases, though the metabolic system is not
large and the precision depends on the computational solver.
Instead, FBA uses a linear programming approach to find the
solution of the problem, and therefore the solution is equal
using also different libraries (glpk, Gurobi Optimizer, LINDO
Systems, etc.). The advantage of ODEs-DAEs-PDEs models
lies in the use of kinetic parameters, allowing to investigate
several features, such as the regulatory effect, the variation on
time of the metabolite concentrations and, in some cases,
thermodynamic constraints.
Remarkably, our general sensitivity- and robustness-based

framework allows a detailed understanding and comparison of
the roles played by each component in the models taken into
account. Our approach could be easily adopted also for other
biological light-response phenomena and other organisms. The
main goal of this work is proposing a pipeline for model-based
in silico design based on the state-of-the-art multi-objective
optimization approaches.

■ RESULTS
Photosynthetic Carbon Metabolism. The concept of

robustness is extremely pervasive in nature and seems to be one
of the driving force of evolution;9 moreover, the ability of a
system to preserve its behavior, despite internal or external
perturbations, is a crucial design principle for any biological and
synthetic system.9−12 Applying the concept of robustness to the
Calvin cycle and to the pathways involved in photosynthesis
process allows our method to calculate the limits of enzymes
perturbation at which the system property of interest (a given
level of CO2 uptake) is maintained. The estimation of the
robustness of in silico designed pathways has been performed
using the methodology proposed by Stracquadanio et al.9 A
Monte Carlo algorithm applies a Gaussian noise to the enzyme
concentrations and then estimates the variation of CO2 uptake.
A robust system is characterized by small fluctuations of its
quantitative behavior under investigation, which means that a
robust pathway will ensure the same uptake rate even if the
enzyme concentrations differ from the nominal values.
Although it is possible to perform in silico design and

verification of a biological system, it is still impracticable to edit
long regions of a genome in an arbitrary way; the intrinsic
structure of the genetic information introduces a number of
constraints that must hold in order not to decrease the fitness
of a living organism. From this point of view, it is extremely
important to focus the design on a set of restricted significant
parameters, in order to decrease the complexity of a biological
implementation. However, identifying a set of crucial genes
encoding for important enzymes is an open problem. The
sensitivity analysis tries to correlate the uncertainty in the
output of a model with the uncertainty in the input; it is
important to note that while the robustness analysis performs a
local estimation of the output variation in a limited input range,
the sensitivity analysis aims to study the output variation at a
global level by investigating all the parameter space.13 The

Table 1. Advantages and Limitations of the Methods and
Models Discussed in This Work

features ODEs-DAEs-PDEs FBA

kinetic parameters considered not considered
regulatory effects modeled not modeled
metabolite concentrations prediction allowable steady state
accuracy not always accurate not always accurate
simulation time long short
size small network large network
precision low good
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sensitivity analysis of the model has been performed using the
Morris method.14

The model and the chosen algorithms make it possible to
find the optimized concentration of the enzymes in order to
obtain the highest increase in CO2 uptake, keeping constant the
total amount of protein nitrogen. The parallel optimization
algorithm (PAO) makes it possible to identify solutions
consisting of an optimized set of enzyme concentrations
capable of reaching a theoretical CO2 uptake rate of 36.382
μmol m−2 s−1 at a level of carbonate ions (ci) of 270 μmol
mol−1. The CO2 uptake at the initial enzyme concentrations
was 15.486 μmol m−2 s−1 (Table 2 of the Supporting
Information). Six enzymes are found to be particularly
enhanced in their final optimized concentration: cytosolic
FBP aldolase, cytosolic Fru-1,6-bisphosphatase (FBPase),
UDP-Glc pyrophosphorylase (UDPGP), SBPase, RuBisCO,
and ADPGPP (Figure 5 of the Supporting Information). The
method obtains a theoretical CO2 uptake increase correspond-
ing to 134% with respect to the initial enzymes concentration.
The perturbation of parameters (concentrations) allows to

understand the level of sensitivity of each of the considered
enzymes involved in CO2 fixation. Eleven enzymes are found to
be sensitive, and two of them fragile (Table 3 of the Supporting
Information). The four key enzymes relative to CO2 uptake
were RuBisCO, Fru-1,6-bisphosphate (FBP) aldolase, sedo-

heptulosebisphosphatase (SPBase), and ADP-Glc pyrophos-
phorylase (ADPGPP) (Table 3 of the Supporting Information).
Since biotechnological techniques are currently incapable of

treating many enzymes at the same time, we simulate the effect
of perturbing six enzymes only (RuBisCO, FBP aldolase,
SBPase, ADPGPP, phosphoglycolate phosphatase, and Gly
decarboxylase (GDC)) while the remaining nineteen enzymes
are maintained at their initial concentrations. For this set of six
enzymes, we define the following constraint: the concentration
must be ≥0.02 mg N m−1. RuBisCO, FBP aldolase, SBPase,
and ADPGPP are overexpressed, while phosphoglycolate
phosphatase and GDC are almost switched off. Nitrogen is
kept constant. This configuration obtained a CO2 uptake rate of
32.828 μmol m−2 s−1 (that is, only 3.492 μmol m−2 s−1 less than
the best solution), perturbing only six enzymes (Figure 9 of the
Supporting Information).
A still more refined analysis used always the same set of

enzymes but allowing RuBisCO to increase up to a maximum
of 15% with respect to the initial values. FBP aldolase, SBPase,
and particularly ADPGPP were overexpressed, while phospho-
glycolate phosphatase was switched off and GDC was kept
close to its initial value. This configuration obtained a CO2

uptake rate of 31.819 μmol m−2 s−1 (that is, only 4.501 μmol
m−2 s−1 less than the best solution); the results are shown in
Figure 10 of the Supporting Information. A further simulation

Table 2. Photosynthetic Carbon Metabolism Resultsa

enzyme name
initial concn mg N m−1

(the natural leaf)
optimal concn of 11

sensitive enz. mg N m−1
optimal and robust
concn mg N m−1

optimal and robust conc mg N
m−1 (3 fixed enz)

optimal but not robust
concn mg N m−1

RuBisCO 517.00 (100) 784.27 (84.5) 860.226 (100) 856.44 (100) 861.93 (39)
PGA kinase 12.20 (100) 4.66 (100) 3.989 (100) 3.63 (100) 3.98 (0)
GAP DH 68.80 (100) 69.03 (81.5) 64.483 (100) 65.08 (100) 63.55 (17)
FBP aldolase 6.42 (100) 10.40 (100) 9.050 (100) 10.86 (100) 9.29 (30.5)
FBPase 25.50 (100) 29.44 (100) 26.889 (100) 32.24 (100) 27.03 (0)
Transketolase 34.90 (100) 34.90 (100) 8.247 (100) 16.93 (100) 16.98 (100)
SBP aldolase 6.21 (100) 5.55 (100) 6.661 (100) 5.75 (100) 5.94 (0)
SBPase 1.29 (100) 4.70 (100) 4.397 (100) 4.43 (100) 4.31 (1)
PRK 7.64 (100) 7.04 (100) 7.007 (100) 6.38 (100) 7.99 (22.5)
ADPGPP 0.49 (100) 2.12 (100) 0.721 (100) 5.09 (100) 1.22 (0)
PGCA Pase 85.20 (100) 0.95 (100) 0.325 (100) 0.20 (100) 0.00 (0)
Glycerate kinase 6.36 (100) 6.36 (100) 0.005 (100) 0.00 (100) 0.00 (100)
Glycolate oxidase 4.77 (100) 4.77 (100) 0.019 (100) 0.16 (100) 0.00 (100)
GSAT 17.30 (100) 17.30 (100) 0.027 (100) 0.00 (100) 0.00 (100)
Glycer. dehyd. 2.64 (100) 2.64 (100) 0.003 (100) 0.00 (100) 0.00 (100)
GGAT 21.80 (100) 21.80 (100) 0.00005 (100) 0.00 (100) 0.00 (100)
GDC 179.00 (100) 0.02 (100) 0.00003 (100) 0.00 (100) 0.00 (100)
Cyt. FBP ald. 0.57 (100) 0.57 (100) 2.127 (100) 0.57 (100) 2.03 (0.5)
Cyt. FBPase 2.24 (100) 2.24 (100) 5.554 (100) 2.24 (100) 5.27 (30.5)
UDPGPP 0.07 (100) 0.07 (100) 0.531 (100) 0.07 (100) 0.50 (0)
SPS 0.20 (100) 0.20 (100) 0.034 (100) 0.01 (100) 0.03 (30.5)
SPP 0.13 (100) 0.13 (100) 0.031 (100) 0.01 (100) 0.03 (0)
F26BPase 0.02 (100) 0.02 (100) 0.00 (100) 0.00 (100) 0.00 (100)
CO2 uptake
(μmol)/(m2s)

15.486 33.317 36.382 36.197 36.495

(local R %, global
R %)

(100, 81.80) (81.5, 78.3) (100, 97.2) (100, 92.6) (0, 39.18)

aConcentrations of the enzymes, individual robustness, CO2 uptake rate (at ci = 270 μmol mol−1, reflecting current CO2 atmospheric concentration),
and global and local robustness values. The second column reports the touchstone concentrations used in our simulations: the initial/natural leaf
(modeled by Zhu et al.1). The third column reports the results of the optimization in which only the 11 sensitive enzymes are altered, while all of the
others are kept at their nominal values. The fourth column reports the best-known leaf design, in terms of CO2 uptake and robustness. The fifth
column reports the results of a simulation where the enzymes cytosolic FBP aldolase, cytosolic FBPase, and UDP-Glc pyrophosphorylase have been
maintained to their initial values. The last column reports the most efficient known point in terms of CO2 but corresponds to a highly instable
solution.
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attempted an optimization of the CO2 uptake rate perturbing
four enzymes only (FBP aldolase, SBPase, PGCAPase, and
GDC) while the remaining 21 enzymes were maintained at
their initial concentrations. This configuration (Figure 11 of the
Supporting Information) obtained a CO2 uptake rate of
22.4202 μmol m−2 s−1 with respect to the initial concentration
of about 16 μmol m−2 s−1. In a combinatorial approach, we
performed another optimization with a different set of four
enzymes, which were FBP aldolase, ADPGPP, PGCAPase, and
GDC. This configuration obtained a CO2 uptake rate of 20.626
μmol m−2 s−1 (Figure 12 of the Supporting Information).
The results (maximization of CO2 uptake, while minimizing

nitrogen necessity) summarized in Table 3 of the Supporting
Information, showed that 11 enzymes are found to be sensitive
(Figure 3 of the Supporting Information) and two of them
fragile. There are four key enzymes relative to the CO2 uptake:
RuBisCO, FBP aldolase, SPBase, and ADPGPP. Six of the
sensitive enzymes were coincident with the known light-
controlled enzymes of the cycle. Both of the fragile enzymes
were light-controlled. A first conclusion is that the most
sensitive enzymes are key enzymes that can strongly influence
the CO2 uptake with slight concentration variation. The fact
that these enzymes are mostly light-controlled confirms the
strict control of light availability on the Calvin cycle. Highly and
moderately sensitive enzymes found by Sun et al.,15 on the basis
of microarrays expression patterns, largely correspond with
those indicated in our analysis, with the exception of
tranketolase (moderately sensitive according to ref 15 and at
low sensitivity in our analysis). The proposed solution has a
high level of robustness (last column of Table 3 of the
Supporting Information). GAPDH and PRK did not vary much
their concentration during the optimization analysis. This result
would fit well with the fact that the expression of these two

enzymes is controlled by light, while specific chloroplast
proteins as CP12 are capable of controlling their activity
forming with them a complex PRK/GAPDH/CP12 with high
molecular weight.16 Such refined control appears to be
appropriate for sensitive enzymes, and similar controls may
be widespread for sensitive enzymes in vivo.
The simple finding of an optimal solution with ideal

concentrations could be not a sufficient task, since the
transcription process of the enzymes genes and other control
systems linked to changing environmental conditions and/or
feedbacks coming from other biochemical pathways could vary
the enzymes concentration or their activity with time.
Moreover, biotechnological insertion of new promoters
sequence is not able to produce an exact and foreseen amount
of transcripts. Therefore it is clear that it is important to
estimate how well the achieved CO2 uptake is preserved under
perturbation at the enzyme concentration level. Robustness can
be defined as the persistence of a system property with respect
to perturbations.9 Such property can be assessed in our analysis
and can be fundamental to foresee the effect of a
biotechnological genetic modification. The results of this
analysis are shown in Table 2 and in Table 2 of the Supporting
Information.
The application of the PAO algorithm to the ODEs system

for optimizing the enzyme concentration in order to maximize
CO2 uptake maintaining nitrogen constant showed that six
enzymes were particularly enhanced: cytosolic FBP aldolase,
cytosolic FBPase, UDPGPP, SBPase, RuBisCO, and ADPGPP
(Figure 5 of the Supporting Information). An increase in
theoretical CO2 fixation rates obtained by varying the enzyme
concentrations of the Calvin cycle starting from the current
experimentally determined values was shown already by various
authors as Zhu et al.1 and Stracquadanio et al.13 The PAO

Figure 2. Photosynthetic carbon metabolism results. CO2 Uptake and protein-nitrogen concentration trade-off. Maximizing the CO2 uptake while
minimizing the total amount of protein-nitrogen concentration; the operative area of natural leaves is located in the green checked area. The label
“Sensitive Enzymes” indicates the multi-objective optimization using the 11 most sensitive enzymes of the model. The three resulting Pareto fronts
have been dominated by the multi-objective optimization over all the enzymes of the model. This trade-off search has been carried out for the three ci
concentrations referring to the environmental conditions of 25 million years ago, nowadays, and in 2100.
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algorithm allowed to obtain a theoretical CO2 uptake increase
corresponding to 134% with respect to the initial enzymes
concentration. This result is even higher with respect to Zhu et
al.1 solutions based on an evolutionary algorithm, which leads
to an increase of 76% (from 16 to 28 μmol m−2 s−1).
The analysis based on the evaluation of the nitrogen

limitation effect (shown in Figure 2) showed that the minimal
amount of nitrogen allowed still a CO2 uptake rate of 5.7. Such
an amount could be taken into consideration as an assessment
of the biomass growth limit of plants living in nitrogen
limitations. Some crops are known to grow better than other
that live in condition of low nitrogen supply. The better
performance of rye compared to that of wheat was attributed to
specific root length,17 but our model may suggest that even the
Calvin cycle enzyme concentrations may be better adapted for
nitrogen limitation with respect to wheat. As a matter of fact,
the latter shows higher growth rate without nitrogen
limitation,17 suggesting that it may be better adapted to high
nitrogen level. The second result was shown as a result of the
Pareto optimality analysis, which should lead to the closest-to-
ideal solution: in this case the CO2 uptake rate is 21.213
(Figure 6 of the Supporting Information) and hence higher
with respect to the average land plant leaf with starting enzyme
concentrations. This value represents a theoretical limit for
biotechnological targets leading to maximizing productivity
with the minimum amount of nitrogen supply, which is the
value close to the economical optimum. It is interesting to
observe that, even in this case, the total CO2 uptake was over
30% higher with respect to the natural CO2 uptake rate at the
natural enzyme concentrations. The calculation of the
maximum CO2 uptake rate at different atmospheric CO2
concentrations (Figure 7 of the Supporting Information)
showed that the main difference between the current CO2
atmospheric concentration and that of the past regarded the
optimization of ADPGPP, PGA kinase, and HPR reductase, all
much higher in the optimization at lower CO2 concentration,
and GCEA kinase, SPS and F26BPase, all much higher in the
situation of high CO2. These three last enzymes were not
among the sensitive enzymes in the optimization at the current
atmospheric CO2 concentration. The results indicated that
changing atmospheric conditions, particularly with respect to
CO2 amount, would produce very different evolutionary
pressure on the enzymes. Concentration enhancement or
reduction would affect one or the other enzymes, depending on
the environmental conditions (at least relative to CO2).
Another important biotechnological target is to check the
possible increase of CO2 uptake leaving RuBisCO constant.
This limitation is appropriate: given that RuBisCO is the most
abundant protein in nature, it has been considered also a
nitrogen reservoir for plant metabolism.18,19 For instance, in an
experiment on the haptophyte alga Isochrysis galbana on the
effects of nitrogen limitation, as cells became more nitrogen-
limited, the fraction of total cell nitrogen contained in RuBisCO
decreased from 21.3% to 6.7%, whereas that of the light-
harvesting complex remained relatively constant. That means
that RuBisCO quantity is not only linked to the CO2 uptake,
but has a secondary function as nitrogen storage. Moreover,
after some studies, the enzyme might already be naturally
optimized under an evolutionary point of view.20 Hence,
further optimization of RuBisCO may prove difficult and lead
to only marginal improvements.21 Therefore, it is quite unlikely
that models allowing free further increase of RuBisCO
concentration, would be really feasible. The optimization of

CO2 uptake rate perturbing 24 enzymes leaving RuBisCO at its
initial concentration (as shown in Figure 8 of the Supporting
Information) leads to a theoretical optimized uptake rate of
22.2698 μmol m−2 s−1 with respect to the initial 15−16 μmol
m−2 s−1 of the natural leaf. The most influential enzyme in this
analysis was ADPGPP showing a very high increase in
concentration.

Identif iability Analysis for Carbon Metabolism Model.
In Figure 3, we show the functional relations among RuBisCO,
GAPDH, and FBPase detected by the identifiability analysis
applied to GAPDH.

It is noteworthy that, according to Table 1 in Supporting
Information, RuBisCO belongs to the same functional group
except for the presence of x5 (FBPase). Indeed, Figure 4 shows
that the optimal transformation β found for x5 is different from
the transformations found for x1 and x3, although the IA
applied to GAPDH has assigned x5 to the same functional
group of x1 and x3. This can happen when the variables taken
into account are also practically non-identifiable (which is the
case of these three enzymes, since their cv is high).
The interdependent decision variables, which are non-

identifiable, may be fixed at an arbitrary value in order to
improve identifiability. Since the variables functionally related
to the fixed variable change accordingly, the model’s dynamical
properties are not changed or restricted by the fixation.

Chlamydomonas reinhardtii. In order to analyze the
photosynthetic capability of C. reinhardtii, a multi-objective
optimization has been performed. Instead of the concentration
values optimized in the carbon metabolism discussed in the
previous paragraph, in this case we considered the genes as
decision variables to optimize, and in particular their presence
or absence in the metabolic network. The gene knockout
strategy is represented as a binary vector y, where the l-th
element is 1 if the l-th gene set is turned off, and 0 otherwise.
Hence, the optimization problem consists of finding the
optimal string of bit y*, which represents the optimal genetic
strategy. Therefore, this is a combinatorial optimization
problem.

Figure 3. Plot showing the functional relation among the three
decision variables RuBisCO, GAPDH, and FBPase, thus highlighting
the structural non-identifiability of these variables. This group has been
detected for the GAPDH enzyme.
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The model of C. reinhardtii is represented by using the FBA
framework. We set the maximum number of knockout allowed
equal to 10. We used both light and dark conditions. In Chang
et al.,3 11 windows of light spectrum can be chosen. Here, we
used solar lithosphere spectrum, which is the result of a
composite analysis from several measurements taken from
different locations under cloudless conditions in the 48
contiguous U.S. states and multiple data normalization
procedures. The other environmental conditions are set to
the values that can be found in the Supporting Information of
the related work.3 In the first case, we chose to maximize the
CO2 consumption and the autotrophic biomass, and then we
performed the ε-dominance analysis. Figure 5 shows the results.
In these conditions, the maximum CO2 consumption is equal
to 6.7331 mmol h−1 gDW−1 with a biomass formation equals to
0.1381 h−1 (Figure 5 C, red points). The organism is not able
to absorb CO2 from the atmosphere in dark conditions; indeed
the CO2 production values are positive (Figure 5 C, black
points), so the organism produces CO2. The first two panels
(A,B) show the Pareto fronts and the related ε-dominance
analysis in light and dark conditions, respectively. The ε-
dominance analysis is a relaxed condition of dominance to
select the Pareto optimal points observed by the optimization
algorithm. In fact, if we consider the non-relaxed condition of
dominance, some interesting solutions may be discarded
although dominated by a small amount. The results reported
in Figure 5A,B confirms this hypothesis. The blue points belong
to the Pareto optimal points obtained from a non-relaxed
condition of dominance. With a relaxed condition, other
acceptable solutions are added (purple, red, and green points).
Furthermore, Table 4 of the Supporting Information

presents the robustness analysis results. We perturb the upper
and lower bounds of the metabolic fluxes. In particular, in the
global robustness (GR) the perturbation is carried out
simultaneously for all fluxes (rates of the reactions) of the
network to evaluate the fragility of the complete organism with
respect to the metrics that are, in this case, the two objective

functions. In the local robustness (LR), the perturbation is
carried out for each flux (so, we have a robustness index for

Figure 4. Plot showing the optimal transformations β (y axis) found
for the three decision variables RuBisCO, GAPDH, and FBPase (x
axis). Although FBPase has been once assigned to the same functional
group of RuBisCO and GAPDH, it shows a slightly different and
noisier behavior.

Figure 5. Maximization of CO2 consumption and biomass formation
in C. reinhardtii in light and dark condition and ε-dominance analysis.
Starting from the points sampled during the optimization routine, we
show in A and B the Pareto front in blue dots. Then, if we apply the ε-
dominance condition choosing ε = 10−6, the analysis obtains a set that
contains both the blue dots and the purple ones. Similarly if we apply
the ε-dominance condition choosing ε = 10−3, the analysis obtains a
set that contains the blue dots, the purple dots, and the red dots.
Therefore new solutions are found if the dominance condition is
relaxed. Panel C shows a comparison between the Pareto fronts of the
two conditions. For CO2 consumption, we indicate a negative value of
production. By “maximizing CO2 consumption”, we indicate the
minimization of CO2 production.
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each flux with respect to the two metrics). We select from the
Pareto front only one strain (one non-dominated solution) and
compare it to the wild type (without knockout). We choose the
strain that maximizes the CO2 consumption and minimizes
biomass formation. The results are shown in Table 4 of the
Supporting Information. The strains are less robust than the
wild types if we consider the global index, which indicates the
robustness of the whole organism (GR). If we consider the
robustness index for each flux, the strain has one minimum,
while the wild types in light and dark conditions have three and
two minima, respectively, and the related fluxes are the pyruvate
transport by free diffusion (chloroplast), the nitrate exchange
and the ammonia exchange in light condition, and the nitrate
exchange and the ammonia exchange in dark condition. In the
same environmental conditions, but only in light condition, in
Figure 6 we choose to maximize the CO2 consumption and the

autotrophic biomass, simultaneously minimizing the H2O. In
this case, the algorithm finds a maximum CO2 consumption
equal to 5.6268 mmol h−1 gDW−1 with a biomass formation
equal to 0.195 h−1 and the H2O consumption equal to 9.8360
mmol h−1 gDW−1. A more interesting result is the good trade-
off between the maximization of CO2 and the minimization of
H2O consumption. In this case, a CO2 consumption equal to
5.4024 mmol h−1 gDW−1 has been obtained with a biomass
formation equal to 0.179 h−1, while the H2O consumption is
equal to 0.5455 mmol h−1 gDW−1. Furthermore, we perform
the robustness analysis considering the three metrics (the three
objective functions). The results are reported in Table 5 of the
Supporting Information. We choose the strain that obtains a
good trade-off between CO2 consumption maximization and
the H2O consumption minimization and compare it to the wild
type. The results are similar to those of Table 4 of the

Figure 6. Simultaneous maximization of CO2 consumption, biomass formation, and minimization of H2O production in C. reinhardtii. We
considered the photoautotrophic condition using the combinatorial optimization for searching gene knockout strategies. In panel A we show the
Pareto front (blue points) obtained by the three-multi-objective optimization. The results for each pair of two objective functions are shown in panel
B, C, and D. Points in black indicate the amount of CO2, H2O production, and biomass in wild type, i.e., without gene knockouts. For CO2 or H2O
consumption, we indicate a negative value of production.

Figure 7. Results obtained by sensitivity and optimization for R. spheroides. (A) Pareto front obtained maximizing biomass formation and CO2
consumption in R. spheroides using a multi-objective optimization to search for genetic knockout strategies in photoautotrophic conditions. For CO2
consumption, we indicate a negative value of production. When we maximize CO2 consumption, we indicate the minimization of the production.
(B) Pathway-oriented sensitivity analysis for R. spheroides. The model includes 63 pathways, and only 14 pathways have sensitivity indexes greater
than zero.
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Supporting Information, so adding H2O consumption does not
cause variation in the global and local robustness.
Rhodobacter spheroides. In order to maximize the CO2

consumption and biomass formation in R. spheroides, we used
our methods to find the best knockout strategies with the
minimum knockout cost. We considered the photoautotrophic
condition, i.e., with a poor environment, where the only carbon
source is CO2. The exchange allowable fluxes are sulfate,
phosphate, ammonia, CO2, magnesium, hydrogen, nicotinate,
and photon (light). Figure 7 shows the results of the multi-
objective optimization. In wild type, R. spheroides grows with a
biomass rate equal to 0.986 h−1 and absorbs CO2 until 44.705
mmol h−1 gDW−1. We show that R. spheroides is able to absorb
CO2 until 57.452 mmol h−1 gDW−1, but while reducing its
growth to 0.418 h−1, with a knockout cost equal to 14. The
strain that reports a biomass of 0.9861 h−1 and 44.7048 mmol
h−1 gDW−1 represents the trade-off design, with a knockout
cost equal to 8, turning off the following genesets: RSP2138,
RSP0361 or RSP2252, RSP0359, RSP0829, RSP3330 or
RSP0656, RSP3142. In this configuration, six reactions are
deleted: fumarate hydratase, L-serine ammonia-lyase, ribose-5-
phosphate isomerase A, lactate dehydrogenase, sodium/sulfate
symporter and acetate via Na+ symport. We performed a large
set of simulations and optimizations for R. spheroides in various
photoautotrophic conditions. We optimize (i) biomass versus
H2O production, (ii) biomass versus O2 production, and (iii)
biomass versus ethanol production. For all these experiments,
the multi-objective optimization has identified only a Pareto
solution very close to the wild type solutions. This means that
in photoautotrophic conditions the organism uses a metabolic
pathway that is essential for its growth, and knockout genes are
not feasible. We found H2O production of 184.589 mmol h−1

gDW−1 with a biomass formation of 0.986 h−1, and O2
production of 1.2265 × 1013 mmol h−1 gDW−1 and biomass
0.0099 h−1. Conversely, in photoautotrophic conditions, R.
spheroides does not produce ethanol, and even if we turn off
genes, the result is always equal to zero. This means that
ethanol is completely consumed in the metabolic network of
the organism during its growth.
In Figure 7B, we report the results of the pathway-oriented

sensitivity analysis (PoSA) and the pathways that have
sensitivity indexes greater than zero. Only 14 pathways (out
of 63 pathways) are found to be sensitive, probably because in
photoautotrophic conditions only the genes in these pathways
have influence on the growth and metabolism of R. spheroides.
Furthermore, we present in Table 8 of the Supporting

Information the robustness analysis results. Similarly as in C.
reinhardtii, the method acts by perturbing the upper and lower
bounds of the metabolic fluxes and calculating both the global
and local robustness. We select two strains from the Pareto
front and compare them with the wild type. We choose the
strains with good trade-off between the maximization of
biomass formation and CO2 consumption and the one that
maximize the CO2 consumption.
Discussion. In this work, we develop methodologies for

analyzing and cross comparing metabolic models. We analyze
in particular three metabolic networks (but our study is
extended with other two little pathways described and
discussed in Supporting Information) because of their
biotechnological and basic science importance. We adopt single
and multi-objective optimization algorithms and we focus both
on finding optimal knockout strategies or concentration
enzymes for biotechnological or basic science purposes. The

Pareto optimality analysis is a useful tool for simulating
biochemical pathways when contrasting objectives have to be
considered simultaneously. By using this analysis, we find that
R. spheroides is able to absorb an amount of CO2 to 57.452
mmol h−1 gDW−1 with a knockout cost equal to 14, deleting six
reactions, while C. reinhardtii obtains a CO2 consumption value
equal to only 6.7331 (Figure 13 in Supporting Information).
The application of this analysis to the Calvin cycle provided the
best solution for the maximization of the CO2 uptake rate and
the minimization of the total nitrogen. The analysis was also
used in order to understand which enzymes are the most
important in CO2 uptake rate and those whose modification is
more robust, that is, less prone to concentration fluctuation.
This objective is a fundamental biotechnological target, since it
is not possible to engineer all the enzymes levels simultaneously
and it is not currently possible even to work on transcription
promoters so finely to obtain a completely definite final enzyme
concentration in vivo. The finding of a limited number of
targets (enzymes) sufficiently robust to obtain a working
solution even in the case of concentration fluctuations could
lead to modified organisms whose activity could be better
predicted. Furthermore, the optimization made it possible to
analyze the scenario foreseen for the end of the century, when
the atmospheric CO2 will be much higher than nowadays, with
an estimated Ci of 490 μmol mol

−1. This simulation was carried
out considering a case with minimal nitrogen availability and
that with highest CO2 uptake. Such simulation could foresee
the response of the photosynthetic organisms to the increase in
CO2 concentration and the increase on agriculture productivity
even with lower amount of available nitrogen.
By using the sensitivity and robustness analyses, we identify

the most sensitive and fragile components of the biological
systems we take into account, allowing us to compare their
models. In R. spheroides we show that only 14 pathways are
sensitive, probably because in photoautotrophic conditions only
the genes in these pathways have influence on the growth and
metabolism. In C. reinhardtii alga, the method finds that a flux
perturbation of the reactions pyruvate transport by free
diffusion (chloroplast), nitrate exchange, or to ammonia
exchange highlights the fragility of the organism with respect
to the metrics chosen (CO2 and biomass formation). The same
behavior is shown by the R, spheroides with respect to the
ammonia or hydrogen exchange reactions.
In order to group enzymes according to functional relations,

we applied the identifiability analysis (IA) to the chloroplast
model. This approach allows detection of structural non-
identifiability, i.e., some components of the model that cannot
be determined unambiguously. The IA showed that RuBisCO,
GAPDH, and FBPase belong to the same functional group, i.e.,
they are interdependent decision variables. Interestingly, this
bears out the results of the sensitivity analysis, which positioned
these three enzymes in the most sensitive group of enzymes for
the maximization of CO2 consumption and the minimization of
nitrogen consumption. The results are reported in the Table 1
of the Supporting Information.

Role of Organelles in the Photosynthesis. Photosyn-
thesis is an organelle orchestra. A hypothetical scenario of
evolution from the ancestral bacterium to the chloroplast is
likely to include engulfments between bacteria. The engulfed
bacteria becomes a membrane-bound organelle specialized in a
specific task, and thus the host is able to specialize in all the
other functions. For instance, when an eukaryote engulfs a
bacterium and starts the process to convert it into a chloroplast,
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gradually it loses some of its apparatus and transfers them to
the chloroplast. Hence, the chloroplast specializes in producing
O2 from CO2, while the bacterium becomes a cytoplasm that
handles the metabolites by the chloroplast and specializes in all
the other functions. Reactions share metabolites, thus avoiding
competition by compartmentalizing an organism allows the
multi-objective optimization of the whole organism. This
process reduces the complexity, but preserves the overall
behavior.
More than one engulfment may have happened. In a

compartmentalized cell, each organelle contains all of the
reactions devoted to a specific function and thus can be thought
of as a large-scale pathway. Significantly, compartments cannot
live without one another, therefore we expect a loss of global
robustness. Indeed, in order for the entire system to work
properly, exchange reactions are needed for transporting
metabolites among organelles, and any disruption of these
key reactions can affect more than one organelle and therefore
the entire cell.
The evolution toward a system of organelles compartmen-

talizing the overall set of reaction can be studied in terms of
Pareto front and model order reduction. The key steps to
perform a reduction of a model are the Pareto optimality, the
sensitivity, and the robustness analyses, because they indicate
the least important parts of the organism, which can often be
fixed as constants rather than included as variables in the
simulations performed through the model. In the evolution
process, during the optimization, i.e., the maximization of a
metabolite, the Pareto front of an organism undergoes both
expansion and contraction phases. Furthermore, robustness and
sensitivity are functions of the conditions because of their
pathway structure are different.
Remarkably, the evolution of a Pareto front can highlight the

benefits of an engulfment. The Pareto optimal point in the
maximization of two metabolites m1 and m2 before the
engulfments can be outperformed by the Pareto optimal
point obtained in the eukaryotic cell by considering both the
organelles responsible for their production (i.e., by merging
their Pareto fronts in a new common front). This improvement
is due to the fact that the two organelles can specialize in
producing metabolite m1 and m2, respectively (see Figure 8).
In the compartmentalization, the contribution of each

organelle is not only to maximize energy production but also
to coevolve with the other cell structures, so as to ensure the
maximum fitness of the cell. In this regard, although a large area
under the Pareto front suggests versatility, it could also lead to

the production of metabolites not directly relevant for the goal
of the organism.
In order to investigate the cooperation between two or more

organelles of the same type, we plan to look at the exchange of
signals between organelles as if they are oscillators. For
instance, we can think of a chloroplast as an oscillator
responsible for rhythmical activity between day and night, i.e.,
with and without sunlight. Likewise, the activity of other
organelles (e.g., mitochondria) may change between day, meals,
and nights. The sensitivity and the robustness of an enzyme in
chloroplasts may therefore depend on the light condition. In
this regard, one should consider the oscillation in the yield of
each organelle and the influence that each organelle has on the
others. Through influence signals, the population of organelles
may reach a global synchrony, depending on the relation
among natural frequencies and the coupling strength.
The partition of pathways into compartmentalized structures

as organelles has a tremendous cost: together with the
reduction of the genome of the “guest”, hundreds of proteins,
previously coded by the guest’s genome need to migrate to the
host genome and acquire a signal that enables them to enter the
guest environment(s). Clearly, this is not a one-step process,
and we envisage intermediate states. The Pareto front analysis
along with the sensitivity analysis may provide clues for this
hypothesis.
Finally, there are some open questions that a Pareto front

analysis can address: (i) Is the photosynthesis optimized if we
chose to optimize all the compartments in the chloroplast? (ii)
Is the number of compartments crucial to the optimization
process?

■ METHODS

In Silico Design of Metabolic Pathways. Our computa-
tional framework (Figure 1) performs three tasks closely linked
and able to manage networks with different complexity and
mathematical modeling. In a first step, sensitivity analysis (SA)
is performed in order to rank input/parameters of the system in
terms of sensitivity, i.e., according to the influence that the
parameters have on the output(s) of the model. We implement
three sensitivity methods: the Morris method,14 the Sobol
method,22 and a new sensitivity analysis, named pathway-
oriented sensitivity analysis (PoSA), based on knockouts
permutation.
The second block of our framework is based on an

optimization procedure. We can choose between a single-
objective optimization or a multi-objective optimization, and
between continuous or combinatorial optimization. The

Figure 8. In a compartmentalized cell, each organelle contains all of the reactions devoted to a specific function, and thus each organelle can
specialize in producing a metabolite. Since two organelles can specialize in producing metabolite m1 and m2, respectively, the overall Pareto front of
the cell exhibits a larger area than before the engulfments.
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algorithms are based on the evolutionary concept, where the
solutions are calculated, compared, and selected in each
iteration/generation of the algorithm. The optimization
algorithms in our framework are inspired by the non-dominated
sorting genetic algorithm II (NSGA-II).23 NSGA-II23 is
designed to ensure an efficient and effective approximation of
the Pareto optimal set. Recently, the NSGA-II has been
extended using an island-based model for parallel optimization;
the new algorithm, called parallel algorithm for optimization
(PAO),24 performs parallel optimizations and swaps non-
dominated solutions every given number of iterations. Decision
variables have a continuous domain, and in our work, we
consider the enzyme concentrations or the uptake rate of the
metabolites that enter in biological systems.
Moreover, the optimization process of our framework

performs also combinatorial optimization. For instance, in C.
reinhardtii we maximize simultaneously the biomass formation
and the CO2 consumption, searching for the best gene
knockout strategies. Knockouts are represented by means of a
binary vector y, where the element yl is equal to 1 when the l-th
manipulation is turned off and equal to 0 when the l-th
manipulation is turned on. Since decision variables assume only
two values, we are dealing with a combinatorial optimization
problem. The aim is to find the best gene manipulations with
minimum knockout number (necessary for biotechnological
purposes, which can be considered as another objective
function).
In a multi-objective optimization problem, when the

objective functions are in conflict with each other, the output
is a set of non-dominated solutions, called the Pareto front. In
multi-objective optimization, there is normally not a single
solution optimal in all respects. Among the feasible solutions,
the algorithm selects the non-dominated solutions, also called
Pareto solutions. Vilfredo Pareto was an Italian economist, who
for the first time introduced the concept of optimization for
more objective functions. The non-dominated solutions are
better than others because they are those for which an objective
cannot be improved without worsening at least another
objective. The Pareto optimal set is the set of all non-
dominated solutions.25 Pareto optimality proves very useful for
biodesign automation, because it allows our method to obtain a
wide range of optimal solutions and also the best trade-off
design.
A multi-objective optimization algorithm is characterized by

four main steps. In a first step, a starting population is
initialized. A population is formed by a set M of individuals,
each of which is represented by a decision variables set (whose
values are chosen randomly or by the user) and the objective
functions values obtained by using the corresponding decision
variables. Decision variables are parameters of the system that
we want to optimize. The value of the objective functions is
strictly linked to the decision variables values. An individual
represents a feasible solution. Once the first population is
initialized, the algorithm enters an evolutionary loop. A new
population is created and updated for each iteration of the
algorithm. Each iteration, called also generation, has the aim to
improve the solution set and optimize the decision variables
values, incorporating the evolutionary concept of Darwin.
According to Darwin, the individuals of the population evolve
from generation to generation and only the best individuals
survive. The same concept is incorporated in the evolutionary/
genetic algorithm. By using the crossover and mutation
operators new individuals are formed, and only the best

individuals are selected and inherited. An individual is better
than another if the latter is dominated with respect to the first
one. The loop terminates when a maximum generation number
is reached, or when a particular solution is found.
Parallel optimization algorithms (PAO) are algorithms

(incorporated in our framework) that exploit coarse-grained
parallelism to let a pool of solutions exchange promising
candidate solutions in an archipelago fashion. Using evolu-
tionary operators such as recombination, mutation, and
selection, the framework completes with migration its approach
based on islands. Each island is a virtual place where a pool of
solutions is allowed to evolve with a specific optimization
algorithm; communications among islands in terms of solutions
evolved by potentially different algorithms are arranged through
a chosen archipelago topology. The island model outlines an
optimization environment in which different niches containing
different populations are evolved by different algorithms and
periodically some candidate solutions migrate in another niche
to spread their building block. In this archipelago approach
different topology choices can raise a completely different
overall solution, introducing then another parameter that has to
be chosen for each algorithm on each island. The PAO
framework actually encloses two optimization algorithms and
many archipelago topologies, but its simplest configuration has
been used to obtain a comprehensible comparison with the
other adopted strategies and to better understand the
optimization capabilities of this approach. The adopted
configuration has two islands with two optimization algorithms,
the advanced CMA-ES algorithm (A-CMA-ES) and the
differential evolution algorithm (DE),26 which exchange
candidate solutions every 200 generations with an all-to-all
(broadcast) migration scheme at a 0.5 probability rate. Even in
its simplest configuration, this approach has shown enhanced
optimization capabilities and an optimal convergence. A-CMA-
ES introduces a set of cutoff criteria to CMA-ES27 and ensures
with a constraint, a lower bound, for each enzyme
concentration to be compatible with the smallest concentration
observed in the natural leaf. In the case of biological networks
modeled with ordinary differential equations (ODEs, e.g., for
photosynthetic carbon metabolism1), the enzyme concentra-
tion values are optimized in each iteration/generation of PAO
until a fixed number of generations is reached or until a
particular solution is found. The models (described in the
following) are implemented in Matlab, and the ODE set is
solved through the Matlab function ode15s. In the case of
biological networks solved with FBA (R. spheroides and C.
reinhardtii), the optimal genetic manipulations are searched
through GDMO. GDMO implements a new combinatorial
mutation operator. Mutation represents a switch, from 0 to 1 or
from 1 to 0. The process is randomly executed; for each parent
individual we create 10 offspring, but only the best is chosen.
Mutations can achieve the maximum knockout number equal
to the parameter C (fixed at 50 by default). A new population
of M individuals is formed selecting the best individuals from
the parents of the previous generation and the current
offspring. The new population undergoes a new round of
evaluation.
Additionally, we introduce the concept of ε-dominance

(inspired by Laumanns et al.28) that adds impressive insights
into the Pareto front interpretation capabilities of metabolic
networks and improves the diversity of solutions and the
convergence of the algorithm. Once Pareto optimal solutions
have been obtained, we consider all the dominated and non-
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dominated solutions of all generations, and we seek solutions
that may have been discarded because they are dominated by a
small ε that, for our purposes, can be considered negligible. In
other words we apply a “relaxed” condition of dominance, thus
building a new set of solutions.
In the robustness analysis step, the interesting optimal

solutions obtained by the optimization are processed. Small
perturbations are made in the new biological systems, and the
fragility of the new networks is tested. The system is said to be
robust if, after perturbations, the outputs do not change in a
significant way. The robustness analysis aims to evaluate the
probability of a system to retain a property under perturbations.
In order to test our computational framework, we choose

three biological systems that have different complexity. Besides
having distinct biological complexity and nature, they are
modeled by using different mathematical methods. In Table 3
we report the mathematical modeling adopted for each systems
and the number of reactions, metabolites, enzymes and genes
contained in the associated model.

R. spheroides and C. reinhardtii genome-scale metabolic
networks were investigated through FBA, which is a widely
used approach for studying biochemical networks. These
network reconstructions contain all of the known metabolic
reactions in an organism and the genes that encode each
enzyme. FBA calculates the flow of metabolites through this
metabolic network, thereby making it possible to predict the
growth rate of an organism or the rate of production of a
desired metabolite.
Metabolic reactions are formally represented by a numerical

matrix S of the stoichiometric coefficients of each reaction. Each
reaction is represented by a flux vj, j = 1, ..., n, through the
network and is constrained by a lower and upper bound, which
define the maximum and minimum allowable flux of the
reaction. The genome-scale metabolic reconstruction contains
also the gene-protein-reaction (GPR) mappings that provide
the links between each gene and the reactions that depend on
it. In particular, genes are represented with a Boolean

relationship to distinguish between single and multifunctional
enzymes, isoenzymes, enzyme complexes, enzyme subunits.
For a set of L genetic manipulations, the GPR mappings are

represented by a L × n matrix G, where the (l,j)-th element is 1
if the l-th genetic manipulation maps onto the reaction j and is
0 otherwise. We used the approach implemented in
OptKnock29 to find the fluxes distribution in the metabolic
network in order to optimize multiple objectives (multi-
objective optimization), i.e., desired productions (synthetic
objectives) and therefore achieve the maximal growth. The
bilevel problem is represented by the following formulation:
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where g is a vector of weights (n dimensional) associated with
the synthetic objectives, and g′ is its transpose. For example,
when the synthetic objectives vj and vh have to be maximized,
the weights gj and gh are equal to 1. y is the knockout vector (L
dimensional). If there are no impaired reactions in the
metabolic network, y contains only zeros. Conversely, when yl
= 1, the gene set involved in the manipulation l is turned off,
and the corresponding reactions are in the absent status (the
lower and upper bounds are set to 0, resulting in a modified
metabolic network). C is an integer representing the maximum
number of knockout allowed. f is a vector of weights (n
dimensional) associated with the natural objectives. All the
elements in f are either 0 or 1. For our purposes, f i is equal to 1
if vi is the biomass core. vj

L and vj
U are the lower and upper

bound values (thermodynamic constraints) of the generic flux
vj. The bilevel problem can be converted to a MILP problem as
described in Optknock. The method implements and solves the
problem using the GLPK solver. Therefore, the objective
functions in the multi-objective optimization problem are
calculated by GDMO solving (1).

Sensitivity Analysis. In modeling, sensitivity analysis (SA)
is a method used to detect the inputs playing a key role on the
output of the model. SA indices have been recently adopted in
systems biology by interrogating the reactions space (RoSA,
reactions oriented sensitivity analysis) and the species space
(SoSA, species oriented sensitivity analysis) to find their
influence on the output of the system.30 In this work, we
perform SA to find the most sensitive inputs in FBA models
using a novel pathway-oriented sensitivity analysis (PoSA).
PoSA allows us to rank the genetic manipulations according to
their influence on the output of the model. Unlike other
sensitivity analysis methods applied in biological modeling,
whose inputs (reactions or species) are real numbers, PoSA is
applied when inputs are Boolean values. Indeed, each input of
the model is represented through a set of binary variables.
In PoSA, the knockout vector y used to represent the genetic

manipulations is partitioned in p subsets of bits {b1,b2, ..., bs, ...,

Table 3. Characteristics of the Metabolic Networks Analyzed
in This Worka

photosynthetic CM1 R. sphaeroides2 C. reinhardtii3

modeling ODEs FBA-GPR FBA-GPR
reactions 39 1158 2190
metabolites 38 796 1068
enzymes 38 595 718
genes n.a. 1095 1080
pathways 3 63 93
optimization PAO − NSGA II GDMO GDMO
sensitivity Morris14 and Sobol22 PoSA Morris14

robustness GR/LR GR/LR GR/LR
aFor each organism/pathway we report the mathematic approach used
to simulate the behavior of the biological system. The first network
(photosynthetic carbon metabolism (CM)1) is modeled by using a set
of ordinary differential equations (ODEs), which represent the change
in concentration of the metabolites involved. The last two organisms
(R. sphaeroides2 and C. reinhardtii3) are modeled by using the flux
balance analysis (FBA) at steady state. We report the number of
reactions, metabolites, enzymes/gene sets, genes and pathways, and
also the algorithms used in our analysis. PAO: Parallel Advanced
Optimization, GDMO: Genetic Design through Multi-objective
Optimization, PoSA: Pathway-oriented Sensitivity Analysis, GR:
Global Robustness, LR: local Robustness.
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bp}. Each subset bs includes the genetic manipulations linked to
the reactions involved in the s-th metabolic functional pathway
of the network. Each subset bs has a cardinality Ws, where Ws<
L,∀s = 1, ..., p. We cluster in each subset all the genes that are
involved in a single functional pathway, e.g., the citric acid cycle,
oxidative phosphorylation, pentose phosphate pathway, and so
on.
For the combinatorial problem described above, we defined

the “elementary effect”14 for the input bs as EEs = ([f(b1,b2, ...,
bs−1,bs̃,bs+1, ..., bp) − f(y)̃])/Δs, where b ̃s is the mutation on the
input bs and consists of the switch of bits chosen randomly in
bs: if a bit is equal to 0 (or 1), the permutation turns it to 1 (or
0). Δs is a scale factor defined as Δs = (1/Ws)Σi=1

Wsbs̃(i), s = 1, ...,
p.
The output f(y) considered in our analysis is the vector v of

fluxes. y ̃ is the mutation carried on the knockout vector y
defined in the Boolean region of interest Ω = {0,1}L = {(y1, ...,
yl, ..., yL)|yl ∈ {0,1}}. In Supporting Information has been
reported the pseudocode of the PoSA method. The parameters
β and K of PoSA establish, respectively, the allowed knockouts
in the whole network and in the pathway bs. In our analysis we
choose β = 0.1 (default value), and we recommend to set 0.02
≤ β ≤ 0.2. K is selected by the user or set by default to 4.
The distribution of effects EEs is obtained permuting y by

randomly sampling KQ points from Ω and permuting bs by
randomly sampling KQN points from Ω. If the procedure is
performed for each input, the result would be a random sample
at a total cost of KQ for calculating f(y)̃ and KQN for f(b1,b2, ...,
b ̃s, ..., bp), with a total cost of pKQ(N + 1) evaluates of function.
The estimation of the mean μ* and standard deviation σ* is
used as indicator of which inputs should be considered
important. A large (absolute) central tendency for EEs indicates
an input with an important overall influence on the output. A
large spread indicates an input whose influence is highly
dependent on the values of the inputs.14

In this work, the computational analysis includes also Morris
and Sobol methods that evaluate in a continuous space the
parameters of the model. For a detailed description see the
original work.14,22

Identifiability Analysis. Models of biological processes
usually include components (e.g., parameters) that are
determined by measuring data and fitting to experiments. A
component for which no unique solution exists is called non-
identif iable.
There are two different sources of non-identifiability: (i)

structural non-identifiability, i.e., some components in the
model may be functionally related and therefore they cannot be
determined unambiguously; (ii) practical non-identifiability,
caused by a low amount or quality of data that does not allow
our method to precisely estimate the component. The
identifiability analysis (IA) detects functionally related (and
thus non-identifiable) parameters by fitting a model repeatedly
to experimental data and analyzing parameter estimates.
Here we consider the chloroplast model by Zhu et al.1 and

the 25 decision variables of the C3 cycle, namely, the
concentrations of its enzymes. We adopt the method proposed
by Hengl et al.31 to detect automatically structural identifiability
consisting of functional relations between decision variables.
These relations are detected by applying the alternating
conditional expectation algorithm (ACE).32

Let K = [v1, ... vm] ∈ n×m be the matrix of the n values for
the m decision variables {x1, ..., xm}, where each column vi ∈n

contains the n estimates for the i-th variable. Let us suppose

that the variables are related by unknown linear or nonlinear
functional relations. The true transformations that linearize
these relations are denoted by α and βj, namely, α(xi) =
Σj≠i
m βj(xj) + ξ, where ξ represents a Gaussian noise. The ACE

algorithm32 estimates the optimal transformations α̂(xi) and
β̂j(xj), j ≠ i, such that α̂(xi) = Σj≠i

m β̂j(xj) where xi is the response
and all the other variables are the predictors.
The process of repeating estimates in the matrix K is replaced

by taking into account all the non-dominated points of the
Pareto front. In other words, a single fitting sequence K is
obtained by considering the entire front. Thus, the problem of
identifiability analysis is mapped onto the problem of detecting
groups of the functionally related decision variables that
produce that Pareto front.
Specifically, the connection between the identifiability

analysis and a constraint structure stems from the fact that a
non-identifiable constraint involving decision variables causes
them to be functionally related. In our case, the constraint is
detected through 1903 estimates of all the 25 variables
(enzymes). Each estimate corresponds to a non-dominated
point of the Pareto front obtained to maximize the CO2 uptake
rate and minimize the nitrogen consumption.
We adopt the mean optimal transformation approach

(MOTA)31 by fixing at 5 the maximal number of parameters
allowed to enclose a functional relation. The results are shown
in Table 1 in Supporting Information. The “Groups” column
indicates the functional relations between variables. For
instance, RuBisCO and GAPDH are functionally related. In
other words, the response variable x1 is strongly related to the
predictors x3 and x5. Conversely, the enzymes transketolase
type 1 and SBPase do not have any functional relation with any
other enzyme (Table 1 in Supporting Information). The r2

column indicates how much variance of the response can be
explained by the predictors. A high amount of variance of the
response that can be explained by the predictors indicates a
large effect of the fixation of the predictors on the standard
deviations of the response. The cv(x) = std(x)/mean(x) helps
to distinguish practical identifiable from non-identifiable
parameters.31 In case of practical non-identifiability, the choice
of the parameter to fix depends on the experiments and on
reference values found in the literature.

Robustness Analysis. The basic principle of this analysis is
taken from Nicosia and Stracquadanio’s approach,9 and
explained in the following. First, we define the perturbation
as a function τ = γ(Ψ,σ) where γ applies a stochastic noise σ to
the system Ψ and generates a trial sample τ. The γ-function is
called γ-perturbation. Without loss of generality, we assume
that the noise is defined by a random distribution. In order to
make a statistically meaningful calculation of robustness, we
generate a set T of trial samples τ. Each element τ of the set T
is considered robust to the perturbation, due to stochastic noise
σ, for a given property (or metric) ϕ if the following condition
is verified:

ρ τ ϕ δ
ϕ ϕ τ δ

Ψ =
| Ψ − | ≤⎪

⎪

⎧
⎨
⎩( , , , )

1, if ( ) ( )

0, otherwise (2)

where Ψ is the reference system, ϕ is a metric (or property), τ
is a trial sample of the set T, and δ is a robustness threshold.
The definition of this condition makes no assumptions about
the function ϕ. It can be anything (not necessarily related to
properties or characteristics of the system); however, it is
implicitly assumed that it is quantifiable. The robustness of a
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system Ψ is the number of robust trials of T, with respect to the
property ϕ, over the total number of trials. It is a dimensionless
quantity that states, in general, how the system is robust to
perturbations. The robustness index is a function of δ, so the
choice of this parameter is crucial. Since we are interested in the
behavior of a system when subjected to small perturbations,
and because the behavior is acceptable when the deviations
from the original value is as small as possible, we choose the
values of δ equal to 5% of the metric and sigma equal 10% of
the perturbed variable. Starting from this principle, we evaluate
two values of robustness, the global robustness value (GR) and
the local robustness value (LR). In the first case, the
perturbation is carried out simultaneously on all the input
variables to evaluate the fragility of the system with respect to
the metrics, while in the second case, the perturbation is carried
out on one variable at time, and we obtain a robustness index
for each variable.
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